/
lef&
T

MZR5§ 8 i‘? (THRU}

S AIRCRAFT C PANY, INC.
ONICA/CALIFORNIA

% J10

. (P,

> 01139/

g (NASACROR TMX OR AD NUMBER)

MISSILE & SPACE SYSTEMS DIVISION
oM ]

DOUGLA
SANT

o~ NT@“
S " (ACCESSION NU




A3 ADMINISTRATIVE
CORRESPONDENCE CONTROL

2
z
B Vol

SR g
< £ TR e
e W Ty
Date ~__No W o

T

=
—
<o
vy

AN ENGINE OUT CONTROLLABILITY

STUDY OF THE S-1B STAGE OF THE
SATURN IB VEHICLE MODEL DSV-4B

tu

APRIL 1964
DOUGLAS REPORT SM-46569

prerPArReED By: J.J. KELLY
FLIGHT DYNAMICS AND CONTROL SECTION
SATURN ENGINEERING

PREPARED FOR:

NATIONAL AERONAUTICS AND
SPACE ADMIN'STRATION
UNDER CONTRACT NO. NAS7~101

/gd’%'\lhq

ApPROVED BY: R.E. HOLMEN
CHIEF, FLIGHT DYNAMICS AND CONTROL SECTION
SATURN ENGINEERING

DOUGLAS MISS/LE & SPACE SYSTEMS O/IVISION




ABSTRACT

The effect of a single engine failure during first stage
flight of the Saturn IB vehicle was investigated as
authorized by Scope Change 1128, The prime considerations
were vehicle controllability, aerodynamic loading, and
mission completion. The range of allowable time of engine
failure for each of these considerations was established.
The more critical trajectories were used to study the
effects of dispersions in selected vehicle parameters on
the vehicle performance and controllability.
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1,0 INTRODUCTION

This report presents the results of a study to determine the effects

of a first stage engine failure on the performance of the Saturn IB
vehicle, The criteria used to evaluate the vehicle performance included
the ability to maintain control, to maintain the vehicle structural
loads at a safe level, and to achieve the desired orbit. Wind distur-
bances and dispersions in selected vehicle parameters were considered

in addition to engine failures., Engine failures were simulated from
liftoff to outboard engine cutoff (OECO),

The vehicle dynamic response to a wind gust was determined for either
engine 1 or engine 3 out at various times. Outboard engine failures
were selected because of the resulting loss of control moment and the
more severe, when compared to a fixed inboard engine, disturbing moment.
The results for engine 2 or engine U4 failures are not presented since
the effects of 1 or 4 and 2 or 3 in the pitch plane and 1 or 2 and 3

or b in the yaw plane are equivalent,

For each engine-out time, a wind profile was constructed such that the
peak wind velocity was applied at the altitude of maximum dynamic pres-
sure. This combination was found to be the most critical with respect
to aerodynamic loading. Wind velocity was assumed parallel to the plane
of the local horizontal. The results of the loads analysis, which was
made for the most critical (maximum load) engine-out trajectories, are
presented as the equivalent compressive load at the two most critical
vehicle stations as a function of time of engine failure.

The vehicle dynamic response for various engine-out conditions is pre-
sented in the form of profiles of angle of attack, dynamic pressure,
normal acceleration, angular acceleration, and engine deflection.

Variation in angle of attack, dynamic pressure, angular acceleration,
normal acceleration and engine deflection were determined as functions
of dispersions in center of pressure, center of gravity, attitude error
and angle of attack gains, individual engine thrust, and total thrust.
These variations were determined for the most critical engine.out
trajectories,

Results indicate that controllability*, from either a tumbling or
structural loading point of view, is critical for engine failures prior
to 83 seconds (the time of peak dynamic pressure in the 8 engine tra-
jectory) when wind disturbances and three sigma parameter variations

are included. This is based on the most critical engine.out trajectories
with respect to the maximum angle of attack-dynamic pressure product.

Actual loss of control or tumbling occurs for engine number 1 failures
prior to about 20 seconds after liftoff and engine number 3 failures
prior to about 10 seconds after liftoff, However, this tumbling doesn’t
occur until the vehicle reachés the region of maximum dynamic pressure
which is between 115 and 125 seconds after liftoff for an engine failure

* For the purpose of the study, the vehicle was considered to be "con-
trollable™ if it did not tumble and if the structural integrity was
maintained.




2.0

early in flight. These unstable conditions exist without the effects
of disturbances due to winds and dispersions in vehicle parameters,

When disturbances due to winds are included, the time prior to which

an engine failure results in unsatisfactory control is extended to 59
seconds due to excessive equivalent compressive loads at vehicle station
962,304, Winds also result in excessive loads at the above station for
engine failures in the time interval from 72 to 83 seconds. The equiva-
lent compressive loads were considered to be excessive if the loads,
described in reference 5, were exceeded, These loads were not exceeded
for engine failures in the time interval from 59 to T2 seconds with

wind disturbances, but when variations in the compressive load due to
dispersions in vehicle parameters were included, the loads at station
962,304 became excessive for engine failures in this interval,

Studies made to determine the effects of an engine failure on the re=-
sultant orbit indicate engine failures prior to 139 seconds yield
resultant earth orbits whose perigee altitudes are deemed unacceptable,
An unacceptable orbit was assumed to be an orbit having a perigee alti-
tude less than 60 nautical miles. Engine failure after 139 seconds
leads to orbits whose perigees are greater than 60 nautical miles but
less than the nominal 105 nautical miles,

SIMULATION PROGRAM

2.1 Program Characteristics

The digital computer program used for simulating boost stage flight
characteristics simulates 6-degree-of-freedom flight over a rotating,
oblate spheroidal earth, The program includes the engine and actuator
geometry of the S-IB stage. The force and moment contribution of each
of the eight engines is treated separately so that an engine failure
may be easily simulated. Each of the eight valve-actuator loops is
simulated by an integrator with position feedback, In this way, both
rate and position limits may be imposed on the actuator, and various
servo malfunctions such as gain changes or open loops may be easily
simulated if desired. ‘

The available autopilot feedback signals include attitude error, atti-
tude error rate, body rate, angle of attack, rate of change of angle
of attack, normal acceleration, and integral of attitude error, Any
or all of these signals may be used to simulate the asutopilot.

2,2 Upper Stage Simulation

Two other digital programs were utilized for second stage and orbital
flight, Second stage flight simulation was defined with a 2-dimensional

trajectory optimization program which simulates the path adaptive guidance

of this stage. An orbit determination program was used for flight eval-
uation after second stage burnout.




3.0 VEHICLE CONFIGURATION

3.1 Vehicle Characteristics

The Saturn IB vehicle outboard profile is shown in figure 1. The vehicle
coordinate system and engine sign convention used for this study are pre-
sented in figure 2.

3.1.1 Weight and Propulsion Data

The mass characteristics given in references 1 and 2 were modified to
reflect changes due to the redesigned fins and a subsequent 300 pound
payload increase., A weight summary is presented in table I and the
modified weight, center of gravity, and moments of inertia, as a function
of propellant consumed, are given in table II., Table III lists the per-
tinent propulsive characteristics. The time of inboard engine cutoff
(IECO) and OECO as a function of the time of an outboard engine failure
are presented in figure 3,

3.1.2 Aerodynamic Data

The center of pressure, slope of the normal force coefficient, and the
nominal drag coefficient were taken from reference 3 and are presented

as a function of Mach number in figures 4 and 5. The T-engine-burning
drag coefficient (also presented in figure 4) is different from the
8~-engine-burning drag coefficient due to the fact that the base pressure
drag coefficient, which is a function of the exit pressure area, is
reduced approximately 12 percent with the occurrence of an engine failure.
The aerodynamic parameters given include the effects of the redesigned
fins,

3.2 Trajectory

.The reference trajectory is a direct ascent from AMR, with an aiming
azimuth of T2 degrees measured east of north, to a 105 nautical mile
circular orbit. The S-IB stage pitch command history is characterized .
by vertical ascent for 25 seconds followed by a commanded gravity tilt
turning rate program, until OECO. The pitch command history was
simulated by fitting the program with a fifth degree polynomial. The
S=-IVB stage trajJectory is determined utilizing a simulated path adaptive
guidance system to achieve orbit injection. Pertinent trajectory para-
meters are presented in tables IV and V., In each engine out trajectory
constant missile attitude was commanded following the time of nominal
OECO until actual S-IVB ignition.

3.3 Control System Data

The control equation for both the pitch and yaw autopilots of the S-IB
stage included attitude error, rate of change of attitude error, and
angle of attack feedback. The gains on these feedback signals were
determined through the use of the drift minimum control principle (zero
steady state normal acceleration in the presence of winds) and the
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TABLE I

SATURN IB WEIGHT SUMMARY
ONE ENGINE OUT ANALYSIS

S8-IVB Cut-off

Weight
Event (1v)
Vehicle at Lift-off 1,277,278
Propellant 864, k7
Frost, Fuel Additive, & Lube 0ils 481
IECO - Prior 412,350
Thrust Decsy Propellant 1,448
JECO - After 410,902
Propellant 16,019
Frost, Fuel Additive, & ILube Oils 2
OECO and Separation - Prior 394,863
Thrust Decay Propellant --- 10% Level 1,275
S-IVB Ullege Propellant 182
Interstage -5,600
S-IB Stage 100,585
Frost, Fuel Additive, & Lube Oils 1,128
OECO and Separation - After 286,093
S-IVB Ignition - Prior 286,093
Thrust Bulldup Propellant 485
S-IVB Ignition - After 285,608
S-IVB Propellant 4,695
LES Jettison - Prior 280,913
IES 6,600
Ullage Rockets 213
LES Jettison - After 274,100
S-IVB Propellant 214,166

59,93k

Time
(sec)

0.0

147.1

1h7.1

153.1

153.1

158.6

158.6

168.6

168.6

624.8



TABLE II

SATURN IB/S-IB STAGE MASS CHARACTERISTICS

WEIGHT OF S-IB VEHICLE c.¢. () PTTCH ROLL
PROPELLANT TIME WEIGHT POSITION INERTTA INERTIA
CONSUMED (LBS) | (SEC.) (LBS) (IN) (swg Fr2) (sLue Fro)
0 0 1,277,278 627.06 49,657,834 1,566,099.0
57,895 10 1,219,349 620.55 k9,408,592 1,478,962.5
116,519 20 1,160,691 615.95 49,34k ,302 1,392,843.5
175,419 30 1,101,755 613.16 49,161,607 1,306,935.6
234,379 Lo 1,042,761 612,43 49,104,456 1,223,351.3
293,415 50 983,692 614.02 49,042,801 1,138,366.0 °
352,473 60 92l ,600 618.19 48,925,656 1,054,898.0
412,478 TO 865,562 626.24 48,694,784 972,835.1
471,632 80 806,376 638.17 18,261,511 888,809.2
530,842 90 THT,131 655.75 47,540,959 807,241.8
590,097 | 100 687,843 679.81 46,389,148 723,935.8
648,980 110 628,927 T11.92 Lk, 716,970 643,149.1
707,674 120 570,201 T754.89 42,204,821 560,530.9
766,162 130 511,680 812.38 38,47k ,547 476,937.0
82k,352 140 453,458 889.60 33,426,786 397,503.7
86k, LhT 1h7.1 412,350 960.70 28,491,619 341,975.9
865,895 1h47.1 410,902 963.60 28,212,737 339,610.3
881,91k 153.1 394,863 996.73 25,805,612 319,727.1
883,189 153.1 393,588 999.96 25,619,404 318,168.2

(1) Measured in inches
forward of gimbal

plane.




TABLE III

SATURN 1B
ENGINE PROPULSION CHARACTERISTICS

S-IB FIRST STAGE (8 H-1 Engines)

Thrust Per Engine 188,000 1b Sea ILevel
Specific Impulse 256 sec Sea Level

S-IVB SECOND STAGE (1 J-2 Engine)

Thrust 200,000 1b Vacuum
Specific Impulse 426 sec Vacuum
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DRAG COEFFICIENT, Cp

DRAG COEFFICIENT FOR BOTH 7 AND 8
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L0

specification of a control loop natural frequency of 0.15 cps and a
damping ratio of 0.75. The resulting gain program for the 8-engine
reference trajectory is presented in figure 6. This gain program was
used for all trajectories studied.

The roll autopilot control equation utilized attitude error and rate

of change of attitude error feedback, These gains, constant throughout
first stage flight, were established by specifying an average roll
natural frequency of 0,15 cps and an average damping ratio of 0,75.

Each engine servo loop was simulated by an integrator with position
feedback. Each engine in both pitch and yaw had a position limit of
:_8 degrees and a rate limit of + 15 degrees per second.

ORBIT CAPABILITY

An analysis was conducted to determine the orbit capability of the
Saturn IB vehicle under the conditions of a first stage engine failure,
The analysis did not include the effects of winds or dispersions in
vehicle parameters,

The variations in the S-IB stage burnout conditions resulting from wind
disturbances and vehicle parameter dispersions are small and have negli--
gible effects on the resulting orbits.

The engine=out trajectories generated during this portion of the study
were also used to determine the altitude of maximum dynamic pressure
for use in the controllability analysis (section 5.0).

4,1 Boost Trajectory Characteristics

The primary parameter affected by an engine failure is angle of attack,
which becomes intolerably high in the maximum dynamic pressure region
(especially in the pitch plane) with an early engine failure, Following
an engine failure, angle of attack buildup occurs in both the pitch and
yaw plane because, 1) the pitch command program, which was designed to
minimize the effects of gravity, is no longer compatible due to the
reduced thrust level, and 2) a combination of attitude error and angle
of attack feedback is necessary to command the trim engine deflection
required to counteract the unbalanced moments about the pitch and yaw
axes.,

Since the nominal flight scheme strives to attain a minimum angle of
attack history, the engine~out conditions are almost always more critical
than the nominal trajectory with respect to controllability.

Other significant vehicle parameters which are affected by an engine
failure are illustrated in the following figures. Ground track hise
tories for both number 1 and 3 engine failures are presented in figures
7, 8, and 9, From figure 7 it can be seen that early failures of engine
number 3 result in considerable dispersion uprange in the vicinity of
the launch site.
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GROUND TRACK HISTORIES FOR VARIOUS ENGINE OUT TIMES
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Inertial elevation flight path angle histories and range versus altitude
profiles, for several engine number 1 failure times, are. compared with
the nominal 8-engine case in.figures 10 and 11 respectively.

The conditions existing at the time of S-IB/S-IVB stage separation are
presented in figures 12 through 15. Engine failures prior to about 20
seconds after liftoff resulted in uncontrolled vehicle tumbling, thus,
separation will not be possible. Several of the more severe combinations
of angle of attack and dynamic pressure existing at the time of separa-
tion were investigated and it was determined that S-IVB attitude devi-
ations during the separation transient were less than 15 degrees.
Therefore, S=IVB stage control following separation is not critical

for those cases of engine fajlure for which S-IB stage controllability

is satisfactory.

4,2 Resultant Orbit

Achievement of the primary mission for the Saturn IB configuration is
jeopardized by the occurrence of a boost stage engine failure., OF
particular concern is the orbit resulting from a given engine-out con-
dition, The flight conditions existing at S-IVB propellant depletion
were used to establish the orbit ephemeris and the perigee altitude was
selected as the element used to judge the acceptability of the orbit.
Figures 10 and 11 indicate that the S-IVB stage burnout conditions for
flight path angle and altitude are near nominal, and therefore, burnout
velocity is the prime element in shaping the perigee altitude trend,

It was assumed that dispersions from the nominal flight history were

not sufficient to render the S=IVB guidance polynomial inapplicable,
Figure 16 shows that engine number 1 failures prior to 139 seconds yield
resultant earth orbits whose perigee altitude is deemed unacceptable,
i.e., less than 60 nautical miles, while failures after 139 seconds lead
to orbits whose perigees are greater than 60 nautical miles but less

than 105 nautical miles. By utilizing the S~IVB stage flight performance
reserve (FPR) propellants, the portion of flight time which can withstand
the loss of one engine and still maintain a minimum perigee altitude of
60 nautical miles is increased by approximately 39 seconds, such that
failures after 100 seconds result in an "accepteble" orbit. In additionm,
by use of the S5-1VB stage FPR, engine failure times after 109 seconds
result in the nominal 105 mile orbital condition., However, it should

be stressed that the eventual availability of the FPR is always question=
able until well into S-IVB flight due to the possible flux in the per-
formance characteristics,

Figure 17 presents perigee altitude versus time of engine-out for engine
3. A comparison with figure 16 indicates that engine 1 is slightly the
more critical,

Figure 18 shows the amount of FPR required for an acceptable perigee
orbit as a function of time of engine-out for both number 1 and 3 engine
failures. Engine failure times occurring on the horizontal segment of
the curve need all the available FPR, and if they receive all that is
loaded their resultant orbit perigee is that presented in figures 16

19
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5.0

and 17, For engine failure times on the sloped segment of the curve,
the primary mission (105 nautical mile circular orbit) can be achieved
if the indicated FPR propellant is available.

CONTROLLABILITY

The controllability of the vehicle was investigated for an engine num-
ber 1 failure and an engine number 3 failure for each of the following
conditions:

a, No winds

b. Ninety-nine percent probability of occurrence wind shear with a
gust at the altitude of maximum dynamic pressure

c, Dispersions of vehicle characteristics with the winds mentioned
in b above,

Engine number 1 and engine number 3 failures were selected for the in-
vestigation because of their diametrically opposing influence on vehicle
response, The antisymmetric effects of failures of engine 1 and 3 are
evident in figures 19, 20 and 21, which represent typical parameter
transients following an engine failure in the high dynamic' pressure
region. The results obtained through the simulation of engines 1 and

3 failures are the same as results that would be obtained by simulating
engine 2 and 4 failures, except for negligible effects due to such
asymmetries as the roll program and the nonspherical earth. Inboard
engine failures were not considered because of the less severe disturbing
moment, as compared to the disturbance due to an outboard engine failure,
Also, since the inboard engines are not gimballed, no decrease in avail-
able control moment results under the condition of an inboard engine-
out. For these reasons, the investigation of engine 1 and engine 3
failures was felt to be sufficient to yield those conditions of greatest
interest, i.e., the "worst case" envelope is defined by engine 1 and

3 failures.

For the purposes of the study, the vehicle was considered to be "control-
lable" if it did not tumble and if the structural integrity was maine
tained. This definition of controllability requires a knowledge of the
structural loads experienced by the vehicle, Therefore, a loads analysis
was performed for several of the more critical engine=-out trajectories.

5.1 "No Wind" Control Characteristics

The no wind trajectories, obtained for the orbit capability analysis,
showed that the flight time before which an engine failure would result
in tunbling was 20 seconds for engine 1 failures and 10 seconds for
engine 3 failures. Attitude error histories for the borderline cases
are presented in figures 22 through 25, From these figures it can be
seen that the attitude errors begin to diverge in intervals of about 115
to 125 seconds. This time interval corresponds to the area of maximum
dynamic pressure and angle of attack for the early time of engine=out

29
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AVERAGE ENGINE DEFLECTION ANGLE (DEG)

AVERAGE ENGINE DEFLECTION ANGLE HISTORIES FOR BOTH NUMBER 1}

AND NUMBER 3 ENGINE FAILURES AT 80 SECONDS
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PITCH ATTITUDE ERROR, A9 (DEG)

12

PITCH ATTITUDE ERROR HISTORIES FOR NUMBER 1 ENGINE
FAILURES AT 15 AND 20 SECONDS
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PITCH ATTITUDE ERROR HISTORIES FOR NUMBER 3 ENGINE
FAILURES AT 5 AND 10 SECONDS
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trajectories. The divergence or tumbling is due to the fact that the
aerodynamic moment at the maximum pressure condition is greater than
the maximum available control moment.

Bending moments were not calculated for these trajectories, but the
aerodynamic loads were sufficiently high for all the cases in which
tumbling occurred that it safely can be said that structural failure
will cccur; possibly before actual control is lost.

5.2 Dynamic Response to Winds

52«1 Winds Description

The winds employed in this study were developed using data obtained
from reference 4, These data, which include the wind speed profile
envelope, the vertical wind shear spectrum envelopes and the wind gust
are presented in figures 26, 27 and 28, These winds were applied as

a means of perturbing the vehicle from the "nominal" atmospheric cone
ditions during first stage flight. The winds functioned as tests of
the launch vehicle's ability to maintain control and/or structural
integrity during specific phases of the S-IB boost stage trajectory.

5.2.1.1 Construction

In the development of the wind profiles, two basic assumptions were
made., First, it was assumed that the flow always acted perpendicular
to a radius vector drawn from the center of the earth to the vehicle.
Second, in the construction of the final wind profiles, it was assumed
that the wind profile "decay" phase would be a mirror image of the
"build-up" phase.

The altitude of maximum dynamic pressure, and the associated dynamic
pressure, angle of attack, and time of occurrence as a function of time
of engine failure are presented in figures 29 and 30 for the no wind
number 1 engine-out trajectories. The same parameters are given in
figures 31 and 32 for the no wind number 3 engine-out trajectories.

The dynamic pressure histories of each of the no wind trajectories were
investigated to determine the altitude of maximum dynamic pressure for
each engine-out condition. The wind profiles were then constructed,

in the manner described in reference L, so that the altitude of maximum
wind velocity was equal to the altitude of maximum dynamic pressure.

Quasi-square wave shaped gusts (embedded jets) were also developed as
set forth in reference 4, These gusts were composed of a wind velocity
increase of 29,52 feet/second over a "build-up" altitude increase of

82 feet, a "life" of gust for 164 feet increase of altitude, and a
velocity decrease of 29,52 feet/second over the "decay” altitude in-
crease of 82 feet, as shown on figure 28, These gusts were imposed
such that they were an extension of the build-up phase of the wind
profiles, and occurred at the altitude of maximum wind velocity.,
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A separate wind profile was constructed for each engine-out trajectory.
The profiles, with gust included, are shown in figures 33 and 34, The
specific engine~out trajectory for which each profile was used is in-
dicated on the figures,

5.2.1,2 Application

The vehicle dynamic response was determined for each engine-out condition
using both head winds and side winds, Head winds were contained in the
pitch plane, at a heading of 180 degrees to the flight azimuth. Side
winds were contained in the yaw plane, at a heading of 90 degrees to

the flight azimuth. Left side winds were used in the number 1 engine-
out trajectories and right side winds were used in the number 3 engine-
out trajectories. These side winds were applied in the directions
described above so that the disturbing moment resulting from the wind
angle of attack would add to, rather than subtract from, the disturbing
moment due to the engine-out, Tail winds were not considered because

of the resulting reduction in relative velocity and, therefore, reduction
in dynamic pressure.

5.2.2 Controllability

Four sets of engine-out trajectories with wind have been defined and
are listed below:

a. Engine 1 out = head winds

b. Engine 1 out left side winds

c. Engine 3 ocut = head winds
d. Engine 3 out - right side winds

Engine~out times of 30, 40, 50, 60, 70 and 80 seconds were simulated
for each of the above sets of trajectories.

The maximum product of dynamic pressure and angle of attack was calculated
for each trajectory and the results used to develop a "worst case" envelope.

This worst case envelope is presented in figure 35. It must be understood
that while this envelope presents the most critical conditions, there

are, in some cases, other combinations of number and time of engine failure
and prevailing wind mode which will result in a dynamic pressure-angle of
attack product which is almost equally critical,

5¢2¢2.1 Control Profiles

The vehicle angle of attack, dynamic pressure, normal acceleration,
angular acceleration, and average thrust vector deflection response is
presented in figures 36 through 55, Figures 36 through 40, and k41
through U5 present number 1 engine out for head and left side winds,
respectively. Number 3 engine failures, head and right side winds are
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shown in figures 46 through 50, and 51 through 55. These figures pre-
sent the vehicle dynamic response for each trajectory studied, which
for each particular engine and time of failure represents the most
ceritical control and serodynamic loading conditions. The vehicle
dynamic response for the most critical trajectories, which are defined
by the worst case envelope presented in figure 35, was used in con-
junction with the vehicle's physical characteristics to calculate the
stzuctural loading. The resulting loads will be discussed in section
Sectte

5.3 Dispersions

After establishing the more "critical” (defined as the maximum product
of dynamic pressure and angle of attack presented in figure 35) engine-

out cases, the effect of vehicle parameter dispersions on these critical

cases was investigated.

53,1 Vehicle Parameter Variations

The following vehicle and autopilot parameters, selected as having the
most significance with respect to the vehicle performance, were varied
in the dispersion analysis:
a. Total Thrust (AT)
Change, in percent, of the total vehicle thrust,

b. Thrust Unbalance (Tu)

A positive unbalance will produce nose up or nose left vehicle
motion.

c. Angle of Attack Gain (Abo)
A positive variation tends to reduce azerodynamic loads.
d, Attitude Gain (Aao)

A positive variation tends to increase the aerodynamic loads
(opposes angle of attack gain),

e. Center of Pressure (Acp)
Positive variation is a ¢p shift toward the nose.
f, Center of Gravity (Acg)
Positive variation is a cg shift toward the nose,
The assumed three sigma variations (AD,) of the above parameters are

shown in table VI, These vehicle para&eter dispersions were resolved
into three sigma trajectory dispersions (APi) which were then used to
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TABLE VI

SATURN IB PARAMETER DISTURBANCES

(3 ¢ VARIANCE LEVEL)

Olpoics FLIGHT TIME (SEC) -

CONDITTIONS ko 50 60 T0 80

ACG (IN) 13.8 12.6 11.8 11.4 8.66
ACP (IN) 83.5 75.2 70.1 67.7 51.6
bay (%) 7.01 6.34 5.91 5.71 4,35
to (%) 7.01 6.3k 5.91 5.71 4.35
Tu (%) 1.52 1.38 1.28 1.24 0.9
ar (%) 0.71 0.71 0.71 0.7 0.71L
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determine the loads dispersions for each of the most critical engine-
out trajectories.

503.2 Trajectory Parameter Variations

Variations in the maximum angle of attack and the dynamic pressure,
normal acceleration, and angular acceleration at the time of maximum
angle of attack were determined as a function of dispersions in the
previously described vehicle and autopilot parameters. These variables
were chosen because of their important influence on vehicle structural
loading. The dispersion analysis (also the loads analysis) was per-
formed for each of the five trajectories (the most critical trajectory
for engine failure times of 40, 50, 60, 70 and 80 seconds as indicated
in figure 35) listed below:

a. Engine number 1 failure at 40 seconds with head winds
b. Engine number 1 failure at 50 seconds with head winds
c. Engine number 1 failure at 60 seconds with head winds
d. Engine number 3 failure at 70 seconds with head winds
e. Engine number 1 failure at 80 seconds with left side winds.

The engine number 1 failure at 30 seconds with head wind trajectory is
not listed because the unfavorable dispersions, such as a forward shift
in the center of pressure, an aft shift in the cg, etc., resulted in
vehicle tumbling due to the excessive aerodynamic moment, The relation-
ships between the vehicle three sigma performance dispersions (3P,) and
the parameter dispersions (3D,) were found by simulating two positive
dispersions and two negative Aispersions for each parameter investigated.
The variation in angle of attack, dynamic pressure, normal acceleration,
and angular acceleration as a function of the above vehicle parameter
dispersions are shown in figures 56 through Tl. These relationships
were linearized about the nominal value in order to obtain an approxi-
mation for the partial derivative 9P,/3D.,. The three sigma parameter
dispersions, AD,, were then used to %alcélate the three sigma performance
dispersion, APi’ as,

3P,
AP, = _AaDj D,

For each of the investigated trajectory parameters, these three sigma
variations, Pi’ were then roote-sum-squared, such that,

Sy
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The values of the P,'s resolved by this procedure represented the

. i . s
variances sbout the nominal trajectory parameters. These variances
were later employed in the loads dispersion analysis.

5.4 Load Analysis

Limit loads on the S~IVB stage during first stage flight of the Saturn
IB vehicle have been calculated at the time of maximum product of dyna-
mic pressure and angle of attack (qa) for both the standard 8~engine
trajectory and the five most critical engine-out trajectories. The
results of these calculations are presented in figures 72 and T3,

In these figures, equivalent compressive load, N '(1b/in), for two
S~-IVB stage stations is plotted against time of engine failure, The
parameter N'c is defined as the maximum load at a cross-=section due to
combined axial loading and bending, or

Nt = =R 4 B

T oom
c 2nr ar2

The stations selected for the presentation of results are the S-IVB/
instrument unit interface (Station 1662,859) and the S-IVB/S-IB inter-
face (Station 962,304). These stations are currently the most critical,
or minimum margin of safety, stations on the stage.

Figure T2 shows a comparison of N' at the maximum gqoa point for a stan-
dard 8-engine trajectory with N°' for the maximum go points of each of
the engine failure trajectories. To indicate the spread in loads cal-
culated for similar trajectory conditions by MSFC (reference 5) and
DAC, the other constant slope line has been entered on the graph. When
N* for a particular time of engine failure lies above either of the
constant-slope lines, the S«-IVB stage possibly may experience permanent
deformation or structural instability. Values of N' at Station
1662,859 for three sigma high and low dispersions abéut the nominal
conditions (as discussed in Section 5.3.2) at maximum qa for each time
of engine failure considered, are also presented. No attempt has been
made to construct a curve through these points since they are somewhat
erratic. However, it should be noted that the effect of these disper-
sions on loads does not appear to be pronounced for engine out times
prior to 60 seconds.

The foregoing discussion applies also to figure T3 with respect to
Station 962,30k,

Because of varying strength capabilities along the vehicle for the same
load condition, it is hazardous to attempt to infer an exact time of
engine failure from each figure that would be a noncritical one from a
structural standpoint. It can be safely inferred that the earlier the
time of engine failure the more likely the possibility of permanent
deformation or structural instability.
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6.0 CONCLUSIONS

An analysis has been made to determine the effects of the failure of
the most "critical” boost stage (H-1l) engine upon vehicle controllability
and mission completion.

The vehicle was said to be controllable if stability was maintained and
its structural limitations were not exceeded. The analysis results
indicate the controllability is critical for engine failure prior to
the maximum dynamic pressure altitude region or prior to about 83
seconds of flight time. This general conclusion is based on the results
of a loads and dispersion analysis performed for the five most critical
engine-out trajectories which included the most severe wind disturbances.
The bar graph presented in figure Th summarizes the effects of each
criterion used to evaluate the vehicle performance. These criteria in-
clude the ability to maintain control, to maintain structural loads at

a safe level and to achieve the desired orbit.

If structural loading is not considered, vehicle control is maintained
for all engine failures after 30 seconds of flight assuming dispersions
less than or equal to the assumed three sigma dispersion listed in table
Vi, Prior to 30 seconds engine number 1 failures resulted in tumbling
in the maximum dynamic pressure altitude region. This tumbling occurs
for engine 1 failures prior to 20 seconds without wind disturbances and
dispersions, Combinations of wind disturbances and unfavorable dis-
persions increase the time that an engine number 1 failure will result
in loss of control to 30 seconds of flight time,

The results of the loads analysis indicated that the loads as presented
in reference 5 will be exceeded at Station 962,304 for each of the five
trajectories selected for the analysis. When the effects of dispersion
are not considered, there is a time interval from 59 to 72 seconds,
during which an engine failure will not result in excessive loads.
However, the effects of dispersions indicate that load limits could

be exceeded during this period,

The orbit capability analysis was performed without the effects of wind
disturbances and dispersions in vehicle parameters, The results indi-
cate that for an engine failure prior to approximately 139 seconds of
flight time orbit injection can not be achieved, though use of flight
performance reserve propellants in the S=-IVB stage can better this
situation somewhat,

When an engine failure occurs at a flight time where the loss of con=
trollability is not predicted and no suitable orbit conditions can be
achieved, there are no pressing demands for immediate abort. That is,
there is a choice of the abort procedure. For the case where loss of
controllability is predicted the earlier the engine failure occurs the
greater is the time before which sbort is mandatory, since actual
structural failure doesn't occur until the vehicle is in the maximum
dynamic pressure region of the trajectory.
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There are several areas of possible interest which were not included

in this study. There are also items which were touched upon but de=
serve more extensive analysis. These include topics such as survey

of less critical engines, aerodynamic heating, time of abort with regard
to vehicle controllability and the chance of debris striking inhabited
areas, time of abort with regard to re-entry module recovery, alternate
optimum attitude command history, compromise attitude command history,
optimization of gain program for loads, extended research on possible
alternate mission objectives, and a thorough examination of probabilities
of FPR propellants availability.
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